نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم، دانشگاه اصفهان، اصفهان، ایران

2 گروه زمین‌شناسی، دانشکده علوم، دانشگاه لرستان، خرم‌آباد، ایران

3 دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

گرانیتوییدهای خاور کوه دم (شمال خاوری اصفهان) واقع در بخش باختری پهنه ایران مرکزی، به درون سنگ‌های آهکی کرتاسه زیرین، آتشفشانی های ائوسن زیرین و پی سنگ دگرگونی تزریق شده است. وجود یک ناهنجاری بسیار قوی در داده های مغناطیسی برداشت شده توسط پهپاد در مرکز محدوده، وجود کانی‌سازی قابل توجه مگنتیتی را اثبات می‌کند. ابعاد این ناهنجاری در حدود 200 متر در 100 متر بوده و واقع شدن در مرز واحدهای آهکی و نفوذی های گرانودیوریتی محدوده، می‌تواند نشان‌دهنده کانی‌سازی از نوع اسکارن باشد. دیگر ناهنجاری های مغناطیسی دیده شده شدت کمتری دارند و در ارتباط با کانی سازی ضعیف مگنتیتی هستند و یا محدود به سنگ‌های آتشفشانی بوده که کانی‌سازی ندارند. مجموعه ساده ماده معدنی شامل مگنتیت، هماتیت، اکسیدهای آهن و به ندرت پیریت همراه با کانی های گارنت، کوارتز، کلسیت، فلوگوپیت، اپیدوت و کلریت است. توده نفوذی گرانیتویید ائوسن زیرین طیفی وسیع از گرانیت وگرانودیوریت تا دیوریت است که بر اختلاط گسترده ماگمایی دلالت دارد. رخداد آهن با گرانیتوییدهایی قرابت دارد که ماهیت شوشونیتی داشته و از ماگماتیسم گسیختگی صفحه فرورونده در طی مراحل میانی فرورانش و در مراحل آغازین برخورد صفحات عربی و اوراسیا ایجاد شده‌اند. شواهد زمین شیمیایی درجه پایینی از ذوب بخشی اسپینل پریدوتیت فلوگوپیت دار در گوشته بالایی و ژرفای کمتر از 70 کیلومتر را برای تولید گرانیتوییدهای خاور کوه دم پیشنهاد می کند.

کلیدواژه‌ها

موضوعات

آقانباتی، س.ع.، زمین‌شناسی ایران، انتشارات سازمان زمین‌شناسی ایران، تهران، 583 صفحه.
ربیعی، ا.، 1385، اکتشافات ژئوشیمیایی ناحیه کوه دم و بررسی ژنز اندیس طلای آن، پایان‌نامه کارشناسی ارشد، دانشکده علوم، دانشگاه تربیت معلم تهران، 126 ص.
سرجوقیان، ف.، کنعانیان، ع. و احمدیان، ج.، 1391، کاربرد شیمی پیروکسن در ارزیابی دما و فشار مجموعه نفوذی کوه دم، مجله پترولوژی، سال سوم، شماره 11، ص 97-110، https://ijp.ui.ac.ir/article_16104_5faaf913fca25230b5e9bdd747586d4f.pdf.
سرجوقیان، ف.، کنعانیان، ع.، اثنی‌عشری، ا. و احمدیان، ج.، 1394، سن‌سنجی توده نفوذی کوه دم، دایک‌ها و آنکلاوهای موجود در آن به روش اورانیم- سرب، فصلنامه علوم زمین، سال بیست و چهارم، شماره 95، ص145-154، https://doi.org/10.22071/gsj.2015.42422. 
شاهزیدی، م.، موید، م.، موذن، م. و احمدیان، ج.، 1387، کانی شناسی، دما- فشارسنجی و تعیین زنجیره ماگمایی سنگ‌های آتشفشانی کوه دم، اردستان، مجله بلورشناسی و کانی شناسی ایران، سال شانزدهم، شماره 3، ص 485-504، https://www.researchgate.net/profile/Mohsen-Moayyed/publication/287196570.
شرکت تهیه و تولید مواد معدنی ایران، 1388، مطالعات اکتشافات تفضیلی آنومالی های طلا و مس منطقه کوه دم.
شرکت مهندسین مشاور پیچاب کاوش، 1379، گزارش مطالعات طرح اکتشافات نیمه تفضیلی طلای کوه دم، اردستان، استان اصفهان.
طالع‌فاضل، ا.، 1393، موقعیت تکتونوماگمایی و ترکیب سیال کانه ساز رخداد عناصر آهن (مس- طلا- بیسموت-نقره) منطقه پی جویی کوه دم، مجموعه فلززایی انارک، دانشکده علوم زمین، دانشگاه خوارزمی، تهران، 233 ص.
طباطبایی‌منش، س.م.، محمودآبادی، ل.، و میرلوحی، ا.س.، 1392، بررسی ژئوشیمی سنگ‌های آتشفشانی ائوسن جنوب غرب جندق (شمال شرق اصفهان)، مجله پترولوژی، سال چهارم، شماره 14، ص79-92، https://ijp.ui.ac.ir/article_16136_0dca8e5a407cc7a6c119ee6e8063dc44.pdf.
فرنگی، ش.، 1401، بررسی شکل گیری و خاستگاه سیال های کانه ساز آهن در منطقه اکتشافی خاور کوه دم، شمال شرق اردستان. پایان‌نامه کارشناسی ارشد، دانشگاه اصفهان، ایران.
فرنگی، ش.، احمدی روحانی، ر. و اعلمی‌نیا، ز.، 1400، بررسی رخداد آهن با استفاده از تکنیک های دورسنجی  بر روی داده های لندست8، استر و سنتینل-2 در شمال خاور زواره، اصفهان، سیزدهمین همایش ملی و اولین همایش بین‌المللی انجمن زمین شناسی اقتصادی ایران، 17 تا 18 شهریور، دانشگاه لرستان، ایران. 
کنعانیان، ع.، سرجوقیان، ف . و احمدیان، ج.، 1387، منشأ آنکلاوهای میکروگرانولار در توده گرانیتوییدی کوه دم، شمال شرق اردستان، مجله پژوهشی دانشگاه اصفهان (علوم پایه)، جلد 30، شماره 1، ص139-166.
کنعانیان، ع.، سرجوقیان، ف.، احمدیان، ج. و میرنژاد، ح.،  1388، پتروژنز توده گرانیتوییدی کوه دم، شمال شرق اردستان، مجله علوم دانشگاه تهران، جلد سی و چهارم، شماره 2، ص41-53، https://jos.ut.ac.ir/article_27992.html.
مهرابی، ب.، طالع‌فاضل، ا. و طباخ شعبانی، ا.ع.، 1393، بررسی ژئوشیمی سنگ کل به منظور مطالعه و تفکیک دگرسانی های گرمابی منطقه پی جویی آهن- مس (+طلا) کوه دم، مجله زمین‌شناسی کاربردی پیشرفته، ایران مرکزی، شماره 11، ص 58-74، https://aag.scu.ac.ir/article_10884.html.
Aghanabati, A., 2004. Geology of Iran. Geological Survey of Iran, Tehran, 586 p. (in persian)
Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., and Mitchell, J.G., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia. Turkey, Journal of Volcanology and Geothermal Research, 102, 67-95, https://doi.org/10.1016/S0377-0273(00)00182-7.
Aistov, L., Melnikov, B., Krivyakin, B., Morozov, L., Kiristaev, V., and Romanko, E., 1984. Geology of the Khur Arrioea (Central Iran), Geol. Surv. Iran, Rep. TE, No. 20. 
Bagheri, S., and Stampfli, G.M., 2008. The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: new geological data, relationships and tectonic implications. Tectonophysics 451, 123–155, https://doi.org/10.1016/j.tecto.2007.11.047.
Baldwin, J.A., and Pearce, J.A., 1982. Discrimination of productive and nonproductive porphyritic intrusions in the Chilean Andes. Economic Geology, 77(3), 664-674, https://doi.org/10.2113/gsecongeo.77.3.664.
Brown, G.C., Cassidy, J., Locke, C.A., Plant, J.A., and Simpson, P.R., 1981. Caledonian plutonism in Britain: A summary. J. Geophys. Res, 86, 10502–10514, https://doi.org/10.1002/9781118782057.ch22.
Castro, A., Aghazadeh, M., Badrzadeh, Z., and Chichorro, M., 2013. Late Eocene-Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source. Lithos, 180, 109-127, https://doi.org/10.1016/j.lithos.2013.08.003.
Conceição, R.V., and Green, D.H., 2004. Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite + pargasite lherzolite. Lithos, 72, 209–229, https://doi.org/10.1016/j.lithos.2003.09.003.
Defant, M.J., and Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducting lithosphere. Nature, 347, 662–665, https://doi.org/10.1038/347662a0.
Dentith, M., and Mudge, S., 2014. Geophysics for the Mineral Exploration Geoscientist. Cambridge: Cambridge University Press. https://doi:10.1017/CBO9781139024358.
DePaolo, D.J., and Daley, E.E., 2000. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chemical Geology, 169(1-2): 157-185, https://doi.org/10.1016/S0009-2541(00)00261-8.
Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., and Frost, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology 42, 2033–2048, https://doi.org/10.1093/petrology/42.11.2033.
Farangi, SH., 2023, Investigation of formation and the origin of mineralizing fluids in the East of Kuh-e Dom Fe district, northeast of Ardestan. Master thesis in economic geology, Isfahan university, Iran. (in persian) 
Farangi, SH, Ahmadirouhani, R., Alaminia, Z., 2021, Investigation of iron occurrence using Landsat 8, ASTAR and Sentinel 2 satellites remote sensing techniques in the NE Zavareh, Isfahan. The 13th national conference and the first international conference of the Economic Geology association of iran, Lorestan university. (in persian)  
Furman, T., and Graham, D., 1999. Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province: Lithos, 48, 237–262, doi:10.1016/S0024-4937(99)00031-6. 
Ghasemi, A., and Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences, 26(6), 683-693, https://doi.org/10.1016/j.jseaes.2005.01.003.
Ghazi, J.M., Moazzen, M., Rahgoshay, M., and Moghadam, H.S., 2012. Geochemical characteristics of basaltic rocks from the Nain ophiolite (Central Iran); constraints on mantle wedge source evolution in an oceanic back arc basin and a geodynamical model. Tectonophysics, 574, 92-104, https://doi.org/10.1016/j.tecto.2011.10.001.
Ghiorso, M.S., and Sack, R.O., 1995. Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. contributions to mineralogy and petrology 119, 197–212, https://doi.org/10.1007/BF00307281.
Goli, Z., Torabi, G., and Arai, S., 2021. High-K calc-alkaline Eocene volcanic rocks from the Anarak area (Central Iran): A key structure for the early stages of oceanic basin closure and the beginning of collision. Geotectonics, 55(4), 600-617, 
https://doi.org/10.1134/S0016852121040075.
Gorton, M. P., and Schandl, E. S., 2000. From continents to island arcs: A geochemical index of tectonic setting for arc‐related and within‐plate felsic to intermediate volcanic rocks. Canadian Mineralogist, 38, 1065–1073, https://doi.org/10.2113/gscanmin.38.5.1065. 
Groves, D.I., Bierlein, F.P., Meinert, L.D., and Hitzman, M.W., 2010. Iron oxide copper-gold (IOCG) deposits through Earth history: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits: Economic Geology and the Bulletin of the Society of Economic Geologists, 105, 641–654, doi:10.2113/gsecongeo.105.3.641.
Gualda, G.A.R., Ghiorso, M., Lemons, R.V., and Carley, T.L., 2012. Rhyolite-MELTS: a Modified Calibration of MELTS Optimized for Silica-rich, Fluid-bearing Magmatic Systems. Journal of Petrology 53, 875–890, https://doi.org/10.1093/petrology/egr080.
Hawkesworth, C., Kelley, S., Turner, S., Le Roex, A., and Storey, B., 1999. Mantle processes during Gondwana break-up and dispersal. Journal of African Earth Sciences, 28(1), 239-261. https://doi.org/10.1016/S0899-5362(99) 00026-3.
Hofmann, A., Jochum, K., Seufert, M., and White, M., 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth and Planetary Science Letter, 33, 33–33, 45, https://doi.org/10.1016/0012-821X(86)90038-5.
Hole, M. J., Saunders, A. D., Marriner, G. F., and Tarney, J. T., 1984. subduction of pelagic sediments: implications for the origin of Ce-anomalous basalts from Mariana Islands. J. Geol. Soc. London 141, 453–472, https://doi.org/10.1144/gsjgs.141.3.0453.
Holtmann, R., Muñoz-Montecinos, J., Angiboust, S., Cambeses, A., Bonnet, G., Brown, A., Dragovic, B., Gharamohammadi, Z., Rodriguez, M., Glodny, J., and Kananian, A., 2022. Cretaceous thermal evolution of the closing Neo-Tethyan realm revealed by multi-method petrochronology. Lithos, 106731, https://doi.org/10.1016/j.lithos.2022.106731.
Hou, Z.Q., Gao, Y.F., Meng, X.J., Qu, X.M., and Huang, W., 2004. Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen. Acta Petrologica Sinica 20, 239–248 (in Chinese with English abstract), https://www.researchgate.net/publication/279572227.
Hou, Z.Q., Zhong, D.L., Deng, W.M., and Khin Zaw, 2005. A tectonic model for porphyry copper-molybdenum gold deposits in the eastern Indo-Asian collision zone. In: Porter, T.M. (Ed.), Super Porphyry Copper and Gold Deposits- A Global Perspective. PGC Publishing, Adelaide, 423–440.
Hofmann, A., Jochum, K., Seufert, M., White, M., 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth and Planetary Science Letter, 33, 33–33, 45, https://doi.org/10.1016/0012-821X(86)90038-5.
IMPASCO (Iran Minerals Production and Supply Corporation), 2011. Reports on the prospecting exploration of Kuh-e Dom area. Ministry of Mines and Metals, Republic Islamic of Iran (unpublished), 440 p. (in persian)
Kananian, A., Sarjoughian, F., Nadimi, A., Ahmadian, J., and Ling, W., 2014. Geochemical characteristics of the Kuh-e Dom intrusion, Urumieh–Dokhtar Magmatic Arc (Iran): Implications for source regions and magmatic evolution. Journal of Asian Earth Sciences, 90, 137-148, https://doi.org/10.1016/j.jseaes.2014.04.026.
Kananian, A., Sarjoughiyan, F., Ahmadian, J., 2008. Origin of microgranular enclaves in Kuh-e Dom granodioritic intrusion, NE Ardestan. Isfahan University Basic Sciences Research Journal, 1(30), 166-139 (in persian)
Kananian, A., Sarjoughian, F., Mirnejad, H., 2009 . Petrogenesis of Kuh-e Dom granitoid intrusion, NE Ardestan. Journal of Sience, University of Tehran, 34(2), 41-53. (in persian)
Kuscu, G. G., Kuşcu, R. M., Tosdal, T. D., and Ulrich, R. F., 2010. Magmatism in the southeastern Anatolian orogenic belt: transition from arc to post-collisional setting in an evolving orogeny. In Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform (Sosson, M., Kaymakcı, N., Stephenson, R. A., Bergerat, F. & Starostenko, V., eds), Geological Society of London, Special Publications, 340, 437–460, https://doi.org/10.1144/SP340.19.
Mehrabi, B., Tale Fazel, E., Tabbakh Shabani, A. A., 2014. Whole rock geochemical techniques for discrimination of hydrothermal alteration of the Kuh-e Dom Fe-Cu(±Au) prospect. Faculty of Earth Sciences, 4(11), 74-58, https://aag.scu.ac.ir/articleـ 10884.html. (in persion)
McDonough, W.F., and Sun, S.S., 1995. The composition of the Earth: Chemical Geology, 120, 223-253, https://doi.org/10.1016/0009-2541(94)00140-4.
Mehrabi, B, and Rabiee, A., 2005. Au-Bi-Cu mineralization in Kuh-e Dom gold deposit, north of Ardestan. 13th symposium of Iranian society of crystallography and mineralogy, Bahonar University of Kerman, 120–126.  (in persian)
Meinert, L., 1995. Compositional variation of igneous rocks associated with skarn deposits -Chemical evidence for a genetic connection between petrogenesis and mineralization, in Thompson, J.F., ed., Magmas, fluids, and ore deposits: Mineralogical Association of Canada, Short Course Series, 23, 401–418.
Meinert, L.D., Dipple, G.M., and Nicolescu, S., 2005. World skarn deposits. In: Hedenquist, J. W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (Eds.), One Hundredth Anniversary Volume. Society of Economic Geologists. https://doi.org/10.5382/AV100.11.
Middlemost, E. A. K., 1994. Naming materials in the magma/igneous rock system. Earth‐Science Review, 37, 215–224, https://doi.org/10.1016/0012-8252(94)90029-9.
Moghadam, H.S., Whitechurch, H., Rahgoshay, M. and Monsef, I., 2009. Significance of Nain-Baft ophiolitic belt (Iran): Short-lived, transtensional Cretaceous back-arc oceanic basins over the Tethyan subduction zone. Comptes Rendus Geoscience, 341(12), 1016-1028, https://doi.org/10.1016/j.crte.2009.06.011.
Moyen, J.F., 2009. High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos, 112(3-4), 556-574, 
https://doi.org/10.1016/j.lithos.2009.04.001.
Müller, D., Rock, N.M.S., and Groves, D.I., 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a pilot study. Mineralogy and Petrology, 46(4), 259-289, https://doi.org/10.1007/BF01173568.
Nabelek, P. I., Russ-Nabelek, C., and Haeussler, G. T., 1992b. Stable isotope evidence for the petrogenesis and fluid evolution in the Proterozoic Harney Peak leucogranite, Black Hills, South Dakota. Geochimica et Cosmochimica Acta 56, 403–17, https://doi.org/10.1016/0016-7037(92)90141-5. 
Nabelek, P. I., Russ-Nabelek, C., and Denison, J. R., 1992a. The generation and crystallization conditions of the Proterozoic Harney Peak leucogranite, Black Hills, South Dakota, USA: petrologic and geochemical constraints. Contributions to Mineralogy and Petrology 110, 173–91, https://doi.org/10.1007/BF00310737.
Nouri, F., Azizi, H., Asahara, Y. and Stern, R.J., 2020. A new perspective on Cenozoic calc-alkaline and shoshonitic volcanic rocks, eastern Saveh (central Iran). International Geology Review, 63(4), 476-503, https://doi.org/10.1080/00206814.2020.1718005.
Ohta, T., and Arai, H., 2007. Statistical empirical index of chemical weathering in igneous rocks: A new tool for evaluating the degree of weathering. Chemical Geology, 240(3-4), 280-297, https://doi.org/10.1016/j.chemgeo.2007.02.017.
Okay, A.I., Topuz, G., Kylander-Clark, A.R., Sherlock, S., and Zattin, M., 2022. Late Paleocene–Middle Eocene magmatic flare-up in western Anatolia. Lithos, 428, 106816, https://doi.org/10.1016/j.lithos.2022.106816.
OSNACA, 2020. Ore samples normalised to average crustal abundance. http://www.cet.edu.au/projects/ osnaca-ore-samples-normalised-to-average-crustal-abundance.
Payjab Kavosh Engineering Geology Consultant, 2000. Sub-detailed exploration report of Kuh-e Dom gold area, Ardestan, Isfahan, Iran. (in persian)
Pearce, J. A., and Peate, D. W., 1995. Tectonic implications of the composition of volcanic arc magmas. Ann. Rev. Earth Planetary Science Letters 23, 251–285, https://doi.org/10.1146/annurev.ea.23.050195.001343.
Pearce, J. A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, 14-48, https://doi.org/10.1016/j.lithos.2007.06.016.
Pearce, J.A., 1983. Role of the subcontinental lithosphere in magma genesis at active continental margins, in Hawkesworth, C.J., and Norry, N.J., eds., Continental basalts and mantle xenoliths: Cheshire, UK, Shiva, 230-249, https://orca.cardiff.ac.uk/id/eprint/8626.
Rabiee, A., 2007, Geochemical exploration of the Kuh-e Dom area and genesis of the Kuh-e Dom gold prospect. Master thesis in economic geology, Faculty of Science, Teacher Training University of Tehran, Iran. (in persian) 
Richards, J. P., Spell, T., Rameh, E., Razique, A., and Fletcher, T., 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu±Mo±Au potential: examples from the Tethyan arcs of central and eastern Iran and western Pakistan. Econ. Geol. 107, 295–332, https://doi.org/10.2113/econgeo.107.2.295.
Richards, J.P., 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere, Geology, 37, 247–250, doi:10.1130/G25451A.1, https://doi.org/10.1130/G25451A.1.
Richards, J.P., and Mumin, A.H., 2013. Magmatic-hydrothermal processes within an evolving Earth: Iron oxide-copper-gold and porphyry Cu±Mo±Au deposits. Geology, 41(7), 767-770, https://doi.org/10.1130/G34275.1.
Romanko, E., Kokorin, Y.U., Krivyakin, B., Susov, M., Morozov, L., and Sharkovski, M., 1984. Outline of metallogeny of Anarak area (Central Iran): v/o Technoexport. Report. TE/No., 19, 143 p.
Rudnick, R. L., and Gao, S., 2003. The composition of the continental crust. In R. L. Rudnick (Ed.), The crust treatise on geochemistry, 3, 1–64. UK: Oxford: Elsevier Pergamon. 
Rajabi, S., Torabi, G., 2012. Petrology of mantle peridotites and volcanic rocks of the narrowest Mezsozoic ophiolitic zone from central Iran (Surk area, Yaz province). Fur gelogie und palaontologie, 265, 49-78, https://doi.org/10.1127/0077-7749/2012/0245.
Sarjoughian, F., Kananian, A., Ahmadian, J., and Murata, M., 2015. Chemical composition of biotite from the Kuh-e Dom pluton, Central Iran: implication for granitoid magmatism and related Cu–Au mineralization. Arabian Journal of Geosciences, 8(3), 1521-1533, https://doi.org/10.1007/s12517-013-1242-5.
Sarjoughian, F., Kananian, A., Esna-ashari, A., Ahmadian, J., 2015. U-Pb zircon dating of Kuh-e Dom intrusion, its dikes and enclaves. Scientific Quarterly Journal of Geosciences, 24(95), 145-154, http:// doi.org/10.22071/gsj.2015.42422. (in persian)
Sarjoughian, F., Kananian, A., Haschke, M., and Ahmadian, J., 2012a. Geochemical signature of Eocene Kuh e Dom shoshonitic dikes in NE Ardestan, Central Iran: implications for melt evolution and tectonic setting. Journal of Geosciences, 57(4), 241-264, http:// doi.org/10.3190/jgeosci.126.
Sarjoughian, F., Kananian, A., Haschke, M., Ahmadian, J., Ling, W., and Zong, K., 2012b. Magma mingling and hybridization in the Kuh-e Dom pluton, Central Iran. J Asian Earth Sci, 54, 49–63, https://doi.org/10.1016/j.jseaes.2012.03.013.
Sarjoughian, F., Kananian, A., Ahmadian, J., 2012. Application of pyroxene chemistry for evaluation of temperature and pressure in the Kuh-e Dom intrusion. Petrological journal, 3(11), 97-110. (in persian) 
Sepidbar, F., Karsli, O., Palin, R.M., and Casetta, F., 2021. Cenozoic temporal variation of crustal thickness in the Urumieh-Dokhtar and Alborz magmatic belts, Iran. Lithos, 400, 106401, https://doi.org/10.1016/j.lithos.2021.106401.
Shademan, P., and Torabi, G., 2022. Petrology and geochemistry of Eocene volcanic rocks from southeast of Khur (Isfahan province, Central Iran). Journal of Economic Geology, 14(1), 157-184, https://doi.org/10.22067/econg.2021.68731.1007.
Shafaii Moghadam, H., Corfu, F., and Stern, R.J., 2013. U–Pb zircon ages of Late Cretaceous Nain–Dehshir ophiolites, central Iran. Journal of the Geological Society, 170(1), 175-184, https://doi.org/10.1144/jgs2012-066.
Shahzeydi, M., Moayyed, M., Moazzen, M., Ahmadian, J., 2008. Minaralogy, thermobarometery and magmatic series of volcanic rocks in Kuh-e Dom, Ardestan. Iranian Journal of Crystallograohy and Mineralogy, 16(3), 485-504, http://ijcm.ir/article-1-630-fa.html. (in persian)
Sharkovski, M., Filichev, I., and Selivanov, E., 1981. Geological map of Kuh-e Dom, scale 1:100000. Geological Survey of Iran.
Sharkovski, M., Susov, M., Krivyakin, B., Morozov, L., Kiristaev, V., and Romanko, E., 1984. Geology of the Anarak area (Central Iran): Geological Survey of Iran. V/O “Technoexport”, Report TE, (19), 143.
Skirrow, R.G., 2022. Iron oxide copper-gold (IOCG) deposits–A review (part 1): Settings, mineralogy, ore geochemistry and classification. Ore Geology Reviews, 140, 104569, https://doi.org/10.1016/j.oregeorev.2021.104569.
Tabatabaei manesh, S. M., Mahmoodabadi, L., Mirlohi, A. S., 2013. Geochemistry of the Eocene volcanic rocks in the SW of Jandaq (NE of Isfahan province). Petrological journal, 4(14), 79-92, https://ijp.ui.ac.ir/article_16136_0dca8e5a407cc7a6c119ee6e8063dc44.pdf (in persian)
Tale Fazel, E., Mehrabi, B., and Tabbakh Shabani, A.A., 2015. Kuh-e Dom Fe–Cu–Au prospect, Anarak metallogenic complex, Central Iran: a geological, mineralogical and fluid inclusion study. Mineralogy and Petrology, 109(1), 115-141, http:// doi:10.1007/s00710-014-0354-2.
Tale Fazel, E., 2014. The tectonomagmatic setting and ore-forming fluid composition of Kuh-e Dom Fe(±Cu-Au-Bi-Ag) prospect, Anarak metallogenic complex. Phd thesis in Kharazmi university of Tehran. (in persian)
Technoexport, 1979. Integrated Geophysical Studies in Anarak Area, Central Iran, Ministry of Mines and Industries Geological and Mineral Survey of Iran. 
Technoexport, 1981. Report on detailed geological prospecting in Anarak area (Central Iran), Kuh e Dom, Rizab-e Maryam, Chah Alikhan Locations, Report No. 9, Ministry of Mines and Industries Geological and Mineral Survey of Iran.
Torabi, G., 2009. Subduction-related Eocene shoshonites from the Cenozoic Urumieh-Dokhrat magmatic arc (Qaleh Khargooshi area, West of the Yazd province, Iran). Turkish Journal of Earth Sciences, 18(4), 583-613, http:// doi: 10.3906/yer-0711-2.
Torabi, G., 2011. Middle Eocene volcanic shoshonites from western margin of Central-East Iranian Microcontinent (CEIM), a mark of previously subducted CEIM-confining oceanic crust. Petrology, 19(7), 675-689, https://doi.org/10.1134/S0869591111030039.
Torabi, G., Arai, S., and Abbasi, H., 2014. Eocene continental dyke swarm from Central Iran (Khur area). Petrology, 22(6), 617-632, https://doi.org/10.1134/S086959111406006X.
Verdel, C., Wernicke, B.P., Hassanzadeh, J., and Guest, B., 2011. A Paleogene extensional arc flare up in Iran. Tectonics, 30(3), https://doi.org/10.1029/2010TC002809.
Whalen, J.B., and Hildebrand, R.S., 2019. Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos, 348, 105179, https://doi.org/10.1016/j.lithos.2019.105179.
Whitney, D.L., and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American mineralogist, 95(1), 185-187, http://www.minsocam.org.
Woodhead, J.D., and Johnson, R.W., 1993. Isotope and trace element profile across the New Britain Island arc Papua new guines. Contrib. Mineral. Petrol. 113: 479-491.
Zhao, X.F., Zhou, M.F., Su, Z.K., Li, X.C., Chen, W.T., and Li, J.W., 2017. Geology, geochronology, and geochemistry of the Dahongshan Fe-Cu-(Au-Ag) deposit, southwest China: implications for the formation of iron oxide copper-gold deposits in intracratonic rift settings. Econ. Geol. 112 (3), 603–628. https://doi.org/10.2113/ econgeo.112.3.603, https://doi.org/10.2113/econgeo.112.3.603.